

European Exascale System Interconnect & Storage

www.exanest.eu

Manolis Katevenis, Coordinator

Foundation for Research & Technology - Hellas (FORTH)

European HPC Summit Week, Prague, 10 May 2016

What ExaNeSt is about

- ARMv8, <u>UNIMEM</u> Partitioned Global Address Space (PGAS)
 - low energy compute
 - low overhead communicate
 - heterogeneous: FPGA accelerators
 - working closely with ExaNoDe, EcoScale, (& EuroServer)
- <u>Network</u>: unified compute & storage, low latency
- Storage: distributed, in-node non-volatile memories
- Extreme Compute Density: totally-liquid cooling
- Prototype: 1K cores, 4 Tby DRAM, 40 Tby SSD, 0.5 M DSP sl's
- Real Applications: Scientific, Engineering, Data Analytics

The ExaNeSt Prototype (2016 – 17)

- Using Xilinx Zynq UltrScale+ FPGAs:
 - Quad-core 64-bit ARM A53 per FPGA
 - 2.5 K DSP slices (~1 TFLOPS equiv.)
 - Cache-coherent low-latency I/O port
- On 120×130 mm² Daugther Boards
 - per DB: 4 FPGA's, 64 GBy DDR4,
 0.5 to 1 TBy SSD, 10× 16Gb/s I/O's
- 8 DB's per Blade, Dozen Blades
- DB Design completed; deploy first few DB's in Fall'16, many in 2017
- SW dev. now on EuroServ. Prototy.

Interconnection Network

- Now: Simulations, Studies:
 - at the Packet/flit level, for protocol behavior and interactions (using INSEE and Omnet+);
 - later at the Flow level: large-scale effects in exascale topologies.
 - Traffic Inputs: Synthetic models, real App Traces, or running App's.
- Later: Experiments on real Prototype running real App's
- Design Goals:
 - unified network for compute & storage
 - flow prioritization: heavy / storage versus short / sync (compute)
 - throttle congestive flows at network edges
 - resiliency: error detect/correct, monitor links, multipath routing
 - all-optical proof-of-concept switch using 2×2/4×4 building blocks

Applications, Traces

Traces generated:

- *Scalasca* profiling tool:
- MPI calls instrumented,
- several GBytes per trace,
- filtered down to tens of Mbytes by keeping what our network simulators will need;
- generally, to be made publicly available.

Main Applications:

- Material science: LAMMPS
- Climate change: REGCM
- Engineering CFD: openFoam, SailFish
- Astrophysics: Gadget, Pinocchio, Changa, Swift
- Neuroscience: DPSNN
- High Energy Physics: LQCD
- Data Analytics: MonetDB
- Next Applications Porting & Tuning:
 - currently porting selected App's to ARM, on the EuroServer Prototype

Storage: current Design work

Global Storage Layer + + per-job SSD/NVM on-demand Parallel Cache Layer

- Based on the <u>BeeGFS</u> parallel filesystem (open source),
 with caching and replication extensions
- Low-latency memory-mapped storage access path in Linux
- Virtualization: RDMA from within VM's; MPI remoting
- Acceleration for Host-to-VM and VM-to-VM interactions

The ExaNeSt Consortium

European Exascale System Interconnect & Storage

- Interconnection <u>Ne</u>twork
- In-node <u>St</u>orage
- Advanced Cooling
- Real Applications

www.exanest.eu

